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Abstract. Public transportation systems inmetropolitan areas carry a high density of daily
traffic, heterogeneously distributed, and exposed to the negative consequences derived
from service disruptions. Breakdowns, accidents, strikes, etc., require on-line operation
adjustments to address these incidents and thus reduce their side effects, such as pas-
senger extra-waiting times, complaints, potential operational dangers, etc. The Vehicle
Rescheduling Problem consists of defining a new schedule for a set of previously sched-
uled trips, given that one/several trips cannot be carried out. This paper addresses the
rescheduling problem in a transit line that has suffered a fleet size reduction (also denoted
as Reduced Fleet Rescheduling Problem). We present different modeling possibilities
depending on the assumptions that must be included in the modelization and we show
that the problem can be rapidly solved using a reformulation that will be proven to have
the integrality property. We test our results in a testbed of random instances outperform-
ing previous results in the literature. We also include a real-world case of the commuter
trains of Madrid, Spain to illustrate our solutions.
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1. Introduction
Timetable design is a central problem in transportation
planning includingmany interfaceswith other classical
problems, e.g., line planning, vehicle scheduling, and
vehicle rescheduling. The Transit Network Timetabling
and Scheduling Problem (TNTSP) is devoted to obtain-
ing and optimizing departure and arrival times for
each line run (i.e., trip from an origin to a final des-
tination) to and from each station over a planning
horizon imposing/optimizing different constraints and
objectives (Ibarra-Rojas, Giesen, and Rios-Solis 2014).
The TNTSP is based on the following general input:
An infrastructure of a transport system described by
a node set (network stations) and an edge set (i.e.,
roads/tracks between adjacent stations), a trip demand
matrixbetweenpairs ofnodesof the infrastructure, a set
of transit lines with associated frequencies that have
already been determined to satisfy such trip demand
and, finally, a vehicle fleet with specific characteristics.
The objective of the TNTSP is finding the arrival and
departure times of each vehicle at each station such that
the demand satisfaction, required fleet size, and vehicle
capacities can be optimized.
Accidents, strikes, and other sources of vehicle de-

lays or cancellations may force modification of an ini-
tial timetable when vehicles in some sections cannot
run according to the initial planning. Here dis-
turbances are relatively small perturbations of the

transit network that can be handled by modifying the
timetable, but without modifying the duties of vehi-
cles and drivers. Complementarily, disruptions are rel-
atively large incidents requiring modification of the
timetable and vehicle duties. There are several exam-
ples of possible disruptions that require the reschedul-
ing of vehicles. Examples include: (1) interruptions
coming from severe weather conditions, accidents, and
the blockage of road or track sections (Cacchiani et al.
2012) or (2) fleet size reductions coming from vehicle
breakdowns, drivers’ and crew strikes (van Exel and
Rietveld 2001) or vehicle reallocations made to rein-
force other sections of the transit network (Burdett and
Kozan 2009). A timetable may also become infeasible
simply due to a heavy passenger flow (Mesa, Ortega,
and Pozo 2009b).

To address these incidents, on-line operation adjust-
ments are required to reduce their side effects. The
Vehicle Rescheduling Problem (VRP) consists of defin-
ing a new timetable for a set of previously sched-
uled trips, given that one/several trips cannot be car-
ried out. While many objectives and constraints remain
from the timetabling problem, new requirements and
objectives arise in this context. In terms of passen-
ger transportation, the main decisions concern mini-
mization of the deviations from the initial timetable
in operation. This is done by cancelling some ser-
vices and/or providing new reference times for some
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vehicles at specific points in the network (Spliet, Gabor,
and Dekker 2014, Kroon, Maróti, and Nielsen 2015).
Further decisions may concern reallocating other avail-
able resources. Li, Borenstein, and Mirchandani (2007)
and Li, Mirchandani, and Borenstein (2009) define
the Vehicle Rescheduling Problem (VRSP) as reassign-
ing vehicles in real-time to a trip affected by a dis-
abled vehicle as well as to other scheduled trips with
given starting and ending times. In their model, they
make binary decisions to cancel trips or to serve a trip
with a vehicle coming from a depot (and therefore
incurring a delay). In this paper, we address the VRP
in a transit line that has suffered a fleet size reduction.
Given an initial timetable with a fixed number of line
runs in a directed transit line and a demand pattern,
the problem consists of determining a new resched-
uled timetable once the number of initial line runs
has been reduced, and optimizing a demand inconve-
nience function. We also denote this problem as the
Reduced Fleet Rescheduling Problem (RFRP).
Users plan their trips based on a known timetable,

and can be greatly disturbed if the service does not
arrive or depart at the expected time. When a dis-
turbance occurs, such as a vehicle breakdown in a
certain line, the system operator must make a deci-
sion about rescheduling the remaining vehicles that
are normally operating along the network to reduce
the loss of service quality perceived by the users. An
important difference between the planning stage and
the rescheduling stage during disruptions is that in
the latter less time is available for making decisions.
In principle, solutions are expected within minutes
(on-line). For the resources, another important differ-
ence is that in general there is less flexibility in the
rescheduling stage, since many resource duties have
already started their scheduled operations when deci-
sions of rescheduling must be assumed and cannot
be easily diverted. In addition, the solution space is
bounded by the remaining time until the end of the
rescheduling horizon, which is usually the end of the
day. Hence, if the disruption happens in the evening,
then the solution space is much smaller than when
the disruption happens in the morning. A straightfor-
ward myopic strategy consists of canceling those ser-
vices that serve the least number of users. Thismethod-
ology would not introduce any change/delay in the
remaining timetables. Nevertheless, a recent paper by
Mesa, Ortega, and Pozo (2013) has shown that if real
time control strategies are applied along a transit cor-
ridor (i.e., by allowing delays in some services of the
initial timetable), then the demand satisfaction after
rescheduling can be significantly increased.

Example 1. The following situation describes a toy ex-
ample of the RFRS for illustrative purposes. Let s be a
station in a directed transit line: Its demand pattern of

Figure 1. Demand Pattern of Total Arrivals at Station s
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total arrivals is represented in Figure 1.We assume that
initially two vehicles are scheduled to depart at times
t1 and t2; therefore, according to the figure a demand
0.8 · d is served at time t1 and a demand 0.2 · d is served
at time t2. If the transport manager has to reschedule
the service by establishing a single vehicle departure
from station s, he may decide among three options for
this isolated scenario. The options are: (1) to keep the
service that departs at t1 and cancel the one at t2, (2) to
keep the service that departs at t2 and cancel the one
at t1 or (3) to delay the service that departs at t1 within
time interval (t1 , t2) and cancel the service departing
at t2. The first and second options affect 20% and 80% of
the demand, respectively. The third option represents
a trade-off between the first two. Later we extend this
example to reschedule a complete timetable in a transit
line assuming a more complex demand pattern. �

In this paper, we address the RFRP to reschedule a
timetable in a transit line. We describe a demand pat-
tern to reflect passengers’ behavior when some vehi-
cle services are delayed or canceled. This pattern lets
us derive a vehicle rescheduling framework coming
from a timetabling formulation in a transit line. We
present and compare different modeling approaches
depending on the assumptions that must be included
in the modelization and we show that the problem can
be rapidly solved using a reformulation that will be
proven to have the integrality property.

The remainder of the paper is organized as fol-
lows. Section 2 reviews the most relevant contributions
related to this work. Section 3 presents the description
of the problem and all details to compute the demand
pattern in the rescheduling phase. Section 4 presents
and compares different RFRP mathematical program-
ming formulations. Computational experiments are
provided in Section 5 to show the usefulness and appli-
cability of this methodology. Finally, some conclusions
are presented in Section 6.

2. Background
Different approaches have been developed in the liter-
ature to address the rescheduling problem distinguish-
ing between (1) disturbances and disruptions, (2) the
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level of detail considered in the railway system, in
particular in the timetable, and (3) focusing the objec-
tive on the vehicles or on the customers. In the second
distinction two approaches can be distinguished, i.e.,
microscopic and macroscopic. The latter considers the
transit network at a higher level in which stations can
be represented by nodes of a graph and roads/tracks
by arcs, and the details of block sections and signals
are not taken into account. In a microscopic approach
these aspects are considered in detail. In the case of
railway systems, most of the approaches in the litera-
ture address (1) disturbances affecting the railway sys-
tem rather than disruptions, (2) the railway system at
a microscopic level rather than at a macroscopic level,
and (3) minimizing the delays of trains or the number
of canceled vehicles rather than minimizing the nega-
tive effects of disturbances and disruptions for passen-
gers (see Cacchiani et al. 2014). This section focuses on
disruptions at a macroscopic level (see, e.g., Veelenturf
et al. 2016) in a transit line.
As to the timetabling problem in a transit line we

refer to Mesa, Ortega, and Pozo (2014a) and the ref-
erences therein. Gathering the integration of timeta-
bles, vehicle scheduling, and passenger choices, Mesa,
Ortega, and Pozo (2014a) present a new approach
for jointly planning timetables and vehicle schedules
along a single transit line emphasizing the point of
view of potential customers. A p-median based for-
mulation is proposed for a given fleet size of vehicles.
In addition, demand behavior is associated with the
inclusion of closest assignment type constraints.
Control strategies such as short turns, deadheads,

and/or express services can be implemented for the
timetabling adjustment in a transit linear corridor.
Mesa, Ortega, and Pozo (2009a) develop an effective
plan for allocating fleet frequencies at stops along a
line based on three objectives, i.e., minimizing pas-
senger overload, maximizing passenger mobility, and
minimizing passenger loss. Schedules for decongest-
ing and recovering the line are determined by means
of optimization models. The methodology proposed
was applied to real data of the commuter train sys-
tem of Madrid, Spain. Kumazawa, Hara, and Koseki
(2010) seek to minimize the dissatisfaction experienced
by the passengers due to disturbances. They propose
a rescheduling algorithm that calculates a value for
the amount of passenger dissatisfaction due to distur-
bances on the Japanese railway network. In addition
to a conventional passenger flow analysis, the passen-
ger overflow, defined as the waiting time experienced
by a passenger while waiting on the platform, is con-
sidered. Nakamura, Hirai, and Nishioka (2011) present
an algorithm for train rescheduling during disruptions
which takes as input train groups, train cancellation
sections, and return patterns. These factors are prede-
termined by the dispatchers. In case of a disruption

obstructing a section of the network, the developed
algorithm determines a new timetable by canceling
trains, combining return patterns, and changing the
train departure order at stations in a series of steps.
The efficiency of the rescheduling plan is evaluated
in terms of passenger dissatisfaction caused by prop-
agated delays. The algorithm is tested on a railway
line in a metropolitan area in Japan. Sato, Tamura, and
Tomii (2013) presents a timetable rescheduling algo-
rithm based on a mixed integer programming (MIP)
formulation when train traffic is disrupted. They min-
imize further inconvenience to passengers instead of
consecutive delays caused by the disruption, since loss
of time and passenger satisfaction are implicitly and
insufficiently considered in that paper. They presume
that inconvenience of traveling by train consists of the
traveling time on board, the waiting time at platforms,
and the number of transfers. Hence, the objective func-
tion is calculated on the positive difference between
the inconvenience that each passenger suffers along
his route for a rescheduled timetable compared to a
planned timetable. For instance, the inconvenience-
minimized rescheduling is often achieved at the cost of
further train delays. Some trains stay longer at a station
to wait for extra passengers or to keep a connection.

Mesa, Ortega, and Pozo (2013) and Mesa et al.
(2014b) study the RFRP reducing the current supply
along one transportation line to reinforce the service
of another line, exploited by the same public oper-
ator, which has suffered an incident or emergency.
Amethodology based on a geometric representation of
solutions is presented. It allows the use of discrete opti-
mization techniques to cover the underlying demand
with efficiency criteria in this context of unexpected
incidents. The proposed methodology is computation-
ally tested and applied to real data of the commuter
train system of Madrid.

This paper differs from all previously cited refer-
ences in several aspects, which we believe provide sig-
nificant contributions to the field. First, we describe
the problem by providing a users’ demand pattern
for modeling the arrival pattern and the passen-
gers’ inconvenience function after rescheduling. This
setting extends the one in Mesa, Ortega, and Pozo
(2013) and Mesa et al. (2014b) to a general framework
in a transit line. Second, a modeling framework for
rescheduling the line is derived from a TNTSP for-
mulation and we present and compare different mod-
eling approaches depending on the assumptions that
need to be included. We show that the problem can
be rapidly solved by using a reformulation that will
be proven to have the integrality property. We test our
results in a testbed of random instances outperform-
ing previous results in the literature. An experimental
study, based on a line segment of the Madrid Regional
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Railway network, shows that our proposed approach
provides optimal reassignment decisions within com-
putation times compatible with real-time use.

3. Problem Description
3.1. Transportation Supply: Infrastructure and

Timetables
Let l be a directed transit line running along a set of sta-
tions S � {1, 2, . . . , |S |}. We also consider an additional
terminal station numbered as |S |+ 1. Each station s ∈ S
also occupies the position s along the transit line l. We
denote by 〈s〉 the “name” of station s so that it could be
a text string (e.g., 〈4〉 � “central station”) or a number
(e.g., 〈4〉 � 312). Note that here l can also be under-
stood as a general itinerary along a set of stations in
a transit network. Each vehicle k ∈ K (where |K | � κ)
circulates along l during a time horizon that will be
discretized into a set of time slots T � {1, . . . , |T |} per-
forming a single line run or expedition along the line.
Then, a timetable Θ is a set of arrival/departure times
at each station for each vehicle, Θ � {(θ+

sk , θ
−
sk), s ∈ S,

k ∈ K}. Denoting by λsk the waiting time of vehicle k
at station s and by µsk the travel time from station s to
station s + 1, we define λsk and µsk as:

1. λsk � θ
−
sk − θ+

sk , s ∈ S, k ∈ K.
2. µsk � θ

+

s+1, k − θ−sk , s ∈ S, k ∈ K.
A timetable Θ defined by variables θ+ , θ− , λ, and µ

is called the arrival-departure timetable. Without loss of
generality we can assume that θ+

1k � θ
−
1k − 1, θ+

|S |+1k �

θ−|S |k + µ |S |k , and θ
+

sk , θ
−
sk ∈ T for all s ∈ S, k ∈ K. In addi-

tion we denote by λ∗ (λ∗) the maximum (minimum)
waiting time that a vehicle can stay in a station, that is
λ∗ ≤ λsk ≤ λ∗.
Potentially, every timetable Θ can be generated over

the sets S,K. Nevertheless, the number of feasible
timetables can be greatly reduced under different con-
siderations. First, if we assume equal speed for all vehi-
cles and that vehicle overtakings are not allowed, a
timetable can be redefined as Θ ≡ x � {xst , t ∈ T, s ∈ S}
where xst ∈ {0, 1} equals 1 if andonly if a vehicle departs
from station s at time t. A timetable Θ defined by vari-
ables x is called the departure timetable and it verifies:
1. θ−sk � {t: xst � 1, t ∈ T}|(k), where ·|(k) denotes the

kth element of a set that is sorted in nondecreasing
order.

Table 1. Two Representations of a Timetable in a Directed Transit Line

k � 1 k � 2

s 〈s〉 (θ+

sk , θ
−
sk) λsk µsk (θ+

sk , θ
−
sk) λsk µsk x Ts

1 27 (1, 2) 1 2 (1, 8) 7 2 (xst): xst � 1, t ∈ {2, 8}; xst � 0, o.c. {2, . . . , 9}
2 9 (4, 7) 3 4 (10, 12) 2 4 (xst): xst � 1, t ∈ {6, 11}; xst � 0, o.c. {4, . . . , 13}
3 15 (11, 13) 2 3 (16, 19) 3 3 (xst): xst � 1, t ∈ {9, 15}; xst � 0, o.c. {6, . . . , 15}
4 11 (16, 23) 7 0 (22, 23) 1 0 (x not defined for s � |S | + 1)

2. θ+

sk � θ
−
s−1k + µs−1k .

3. λsk � θ
−
sk − θ+

sk .
Second, the dimension of x can also be reduced de-

fining a time window Ts ⊂ T on each station s ∈ S. The
elements in the set Ts are the time slots that are admis-
sible to reach station s from station 1 and station |S |
from station s within the time horizon. To compute Ts
for each s ∈ S a minimum waiting time λ∗ � 1 can be
established at each station. In addition, we can define
the time window of feasible time slots to arrive at and
depart from each station. Let T2

s be a time window that
contains the set of time slot pairs that are feasible for
arriving and departing at the station s ∈ S. In particular,

T2
s �


{(1, t): t ∈ T1}, if s � 1;
{(u , t): u − µs−1 ∈ Ts−1 , t ∈ Ts :
u + λ∗ ≤ t ≤ u + λ∗} if s ∈ S: s > 1.

(1)

Finally, using the previous assumption of equal speed
for all vehicles, the time horizon T can be reduced
without loss of generality (and therefore the dimension
of x) and the travel times between stations transformed
to a constant value. This transformation is achieved by
redefining θ−sk :� θ−sk −

∑
s′∈S: s′<s µs′k , s ∈ S: 1 < s.

Example 2. Table 1 shows an arrival-departure time-
table for two vehicles (κ � 2) in a directed transit line
running along stations 27, 9, 15, and 11 that occupy
positions 1, 2, 3, and 4 in the line, respectively. We also
show the departure timetable (in terms of variables x)
assuming no overtakings and equal speed for all vehi-
cles. Given |T | � 23 we can compute the time windows
Ts for each station as it is indicated.

3.2. Passengers’ Demand
Passengers enter a station s and wait until a vehicle ar-
rives. Let ast be the number of passengers who access
station s at time t. Demand ast is served by the next
vehicle that departs (strictly) after time t − 1 (denoted
by vehicle kst ∈ K). Because vehicles are assumed to
have unlimited capacity, once a vehicle leaves a sta-
tion all passengers waiting at the station leave with it.
We assume that passengers who entered a station at
time t′ suffer an inconvenience ϕst′t ∈ [0, 1] if they have
to wait until time t > t′ for leaving/departing. Thus,
each user suffers a normalized inconvenience in the
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[0, 1] interval. Without loss of generality we can set the
inconvenience to equal zero if t is not greater than a
given threshold τ1

st′ . This means that passengers may
wait a certain amount of time τ1

st′ without suffering
any inconvenience. On the other hand, we can assume
that the inconvenience is maximum (ϕst′t � 1) after a
time t ≥ τ2

st′ . Finally, within the interval (τ1
st′ , τ

2
st′) the

inconvenience is assumed to be a nonnegative, non-
decreasing monotone function of t, αst′t ∈ [0, 1). In this
way, ϕ fits the expression

ϕst′t �


0, t′ < t ≤ τ1

st′ ;
αst′t ∈ [0, 1), τ1

st′ < t < τ2
st′ ;

1, τ2
st′ ≤ t .

(2)

Next, we model disruptions. In the event that a sub-
set of vehicles becomes unavailable in K, the remain-
ing set of vehicles K̄ ⊂ K must be rescheduled and a
new set of κ̄ � |K̄ | departure times at each station must
be determined (where κ̄ � |K̄ | < κ � |K |). In this sit-
uation, passengers ignore new departure times until
they arrive at a station at time t. We denote by kst′ the
first vehicle, of the original timetable, with a depar-
ture from station s after t′ and by θ−skst′

such departure
time. There are three possible decisions for each depar-
ture time θ−s , kst′

(or service) initially scheduled: (1) to
keep the service in the initial timetable, (2) to delay
the service within time interval (θ−s , kst′

, θ−s , kst′+1) or (3) to
cancel the service. In this way, the inconvenience ϕ̃ suf-
fered by passengers arriving at time t′ will be 0 if they
depart from s as in normal operation, that is, t is no
later than θ−s , kst′

. Otherwise, if the departure from s is
at a time t within time interval (θ−s , kst′

, θ−s , kst′+1), pas-
sengers arriving at time t′ will suffer an inconvenience
denoted by the value ϕ̃st′t � αst′t ∈ [0, 1). In addition,
to penalize canceled services, we can assume that the
inconvenience for passengers arriving at time t′ is full
(i.e., equal to 1) if the service that was initially sched-
uled at θ−s , kst′

is canceled. Therefore, the inconvenience
function under disruptions, ϕ̃, is given by ϕst′t with

Figure 2. Demand Patterns (a), Inconvenience Function (b), and Inconvenience Function After a Disruption (c)

t

�
st
� t

�s
1
, t� �s

2
, t�

1

t

θs
−
, kst�

θs
−
, kst� + 1

1

�
st
� t

˜

U
se

rs

t�

t

(t, ast)

t,  ∑  ast
t ∈[t�, t]

(a) (b) (c)

τ1
st′ � θ

−
s , kst′

and τ2
st′ � θ

−
s , kst′+1

ϕ̃st′t �


0, t′ < t ≤ θ−s , kst′

;
αst′t ∈ [0, 1), θ−s , kst′

< t < θ−s , kst′+1;
1, θ−s , kst′+1 ≤ t .

(3)

Example 3. Figure 2(a) shows an example of a constant
arrivals pattern. The total number of users waiting at
station s during time interval [t′, t] (that is ∑

t∈[t′ , t] ast)
is also depicted. Figure 2(b) shows an example of
an inconvenience cost function for those users who
arrived at time slot t′ and suffered an inconvenience
after time τ1

s , t′ . Note that at time t, with t′ < t ≤ τ1
s , t′ ,

the inconvenience remains constant with value equal
to 0, and at time t, with t ≥ τ2

s , t′ � τ
1
s , t′ + 6, the inconve-

nience remains constant (maximum) with value equal
to 1. Figure 2(c) shows an example of an inconvenience
cost function after a disruption. This is a particular case
of inconvenience cost function with τ1

st′ � θ−s , kst′
and

τ2
st′ � θ

−
s , kst′+1.

Note that in the RFRP, the only meaningful options
are to keep, delay or cancel timetables for each line run.
This implies that fleet sizes do not have to be increased,
no additional drivers are required, etc., so the scenario
under consideration (a single directed line) would not
generate scheduling costs in terms of connections lost,
transfer delays, etc. Therefore, the only costs involved
in the RFRP come from the demand inconvenience
function.

We conclude this section by summarizing the main
assumptions and constraints that will later define the
mathematical formulation of the problem. In parti-
cular,

• All vehicles run along a directed transit line (that
can also be considered as an itinerary along a set of
stations).

• Stopping time at stations and circulation speed is
considered equal for all vehicles.

• Demand inconvenience is given by ϕ̃ and this is
the only cost that will be optimized.

• An extra supply is not provided in the reschedul-
ing, so no more than one vehicle can depart in the
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interval (θ−s , kst′
, θ−s , kst′+1) and if a vehicle departure is

delayed, the next one must be canceled.
Therefore, no headway constraints are explicitly con-

sidered even when we impose that no more than one
vehicle can depart in the interval (θ−s , kst′

, θ−s , kst′+1).

4. Problem Formulation
In this section we present a catalogue of valid MIP for-
mulations for the RFRP. We begin by developing a for-
mulation for the TNTSP in a directed transit line, Fx y ,
that describes passenger inconvenience by means of
function ϕst′t . The Fx y gives rise to an RFRP formula-
tion (Fst) if the inconvenience cost function under dis-
ruption, ϕ̃st′t , is considered instead of ϕst′t . Next, we
extend Fst into another formulation ®Fsut whose coeffi-
cient matrix we prove is totally unimodular. In addi-
tion, we show that the polyhedron of feasible solutions
of ®Fsut can be projected onto a lower dimension space
giving rise to an RFRP formulation (Fsut) with fewer
variables and constraints. Finally, other extensions are
considered for the case when vehicles are not identical.

4.1. A Timetabling Formulation for a
Transit Line (Fx y)

Our main goal here is to analyze the rescheduling
problem that occurs whenever some event happens in
a prespecified timetable. Therefore, one of our inputs
must be an existing running timetabling. Before we
address the main goal, however, we elaborate on the
initial problem of determining an initial timetabling.
Next, we present a new timetabling formulation that
extends the one in Mesa, Ortega, and Pozo (2014a) by
allowing variable stopping times of vehicles at inter-
mediate stations. This results in a better adjustment of
the demand. Once the arrival-departure timetable is
determined by the considered formulation, it will be
used as an input for the RFRP.
Next, we consider scheduling, timetabling, and vehi-

cle scheduling as synonyms since each vehicle per-
forms a single line-run along the transit line. There-
fore κ vehicles are scheduled along the line and the
demand arriving at station s at time t′ is assigned to the
first vehicle departing from that station after time t′.
We recall that xst is defined as a binary variable equal
to 1 if a vehicle departs from station s at time t. The
new formulation Fx y requires a binary variable that
assigns passengers to a time slot where theremust exist
a vehicle departure. Then, let yst′t be a binary variable
equal to 1 if passengers arriving at station s at time t′
are allocated to a vehicle departing at time t. The new
timetabling formulation Fx y results in

Fx y : min
{∑

s∈S

∑
t′∈Ts

( ∑
t∈Ts : t′<t

ast′ϕst′t yst′t

+ ast′

(
1−

∑
t∈Ts : t′<t

yst′t

))}
(4a)

s.t.
∑
t∈T1

x1t � κ, (4b)

0 ≤
∑

t′∈Ts : t′≤t
xst′ −

∑
t′∈Ts+1 : t′≤t+µs

xs+1t′ ≤ 1

s ∈ S, t ∈ Ts : s < |S |, (4c)
xst ≤

∑
t′: (t+µs , t′)∈T2

s+1

xs+1t′ s ∈ S: s < |S |, t ∈ Ts , (4d)

yst′t ≤ xst s ∈ S, t′, t ∈ Ts : t′ ≤ t , (4e)∑
t∈Ts : t>t′

yst′t ≤ 1 s ∈ S, t′ ∈ Ts , (4f)

xst ∈ {0, 1} s ∈ S, t ∈ Ts , (4g)
yst′t ∈ {0, 1} s ∈ S, t′, t ∈ Ts : t′ ≤ t . (4h)

The objective function (4a) minimizes the total users’
inconvenience. It indicates that the inconvenience of
passengers who arrived at station s at time t′ is ϕst′t
if they are allocated to a vehicle departing at time t.
Otherwise, if demand ast′ is not allocated to any time
slot, the inconvenience for those passengers will be
full. Constraints (4b) impose that all vehicles depart
from the first station (that is, there are κ departures
and, in total, κ line runs along the line). Alternatively,
(4b) can be strengthened imposing that all vehicles
must depart from each station. Constraints (4c) impose
that two vehicles cannot coincide in the same station
and that the number of vehicles that have departed
from a station cannot be higher than the number that
have arrived. Constraints (4d) impose that if a vehicle
departs from station s at time t, then another vehicle
must depart from the next station inside time interval
[t + µs + λ∗ , t + µs + λ

∗] (recall that θ−s , 0 � 0, θ−s , κ+1 �

|Ts |+1). Constraints (4e) ensure that no passenger allo-
cations are made to timetables that do not exist. Con-
straints (4f) impose that each demand ast′ is allocated
to no more than one line run.

Formulation Fx y comes from the one developed in
Mesa, Ortega, and Pozo (2014a) where the timetabling
problem is seen as an extended p-median problem in
an ad-hoc space. This new formulation, Fx y , extends the
flexibility of the timetable since vehicles can remain
stopped at intermediate stations allowing a better
adjustment of the demand. In addition, since the objec-
tive function (4a) accounts for the global inconve-
nience of the scheduling, we can equivalently represent
global satisfaction of the scheduling by subtracting this
amount from the maximal possible inconvenience A �∑

s∈S
∑

t′∈T ast′ . This way, we can also write Fx y as

Fx y : A−min
{∑

s∈S

∑
t′∈Ts

( ∑
t∈Ts : t′<t

ast′ϕst′t yst′t

+ ast′

(
1−

∑
t∈Ts : t′<t

yst′t

))}
(4a’)

s.t. (4b)–(4h).
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Clearly, the objective (4a’) is equivalent to

max
∑
s∈S

∑
t′∈Ts

∑
t∈Ts : t′<t

ast′(1−ϕst′t)yst′t . (4a”)

Indeed, the equivalence is straightforward from trans-
forming (4a’) into (4a”)

A−min
{∑

s∈S

∑
t′∈Ts

( ∑
t∈Ts : t′<t

ast′ϕst′t yst′t

+ ast′

(
1−

∑
t∈Ts : t′<t

yst′t

))}
� A−min

∑
s∈S

∑
t′∈Ts

(
ast′ +

∑
t∈Ts : t′<t

ast′(ϕst′t − 1)yst′t

)
� A−min

(
A−

∑
s∈S

∑
t′∈Ts

∑
t∈Ts : t′<t

ast′(1−ϕst′t)yst′t

)
� max

∑
s∈S

∑
t′∈Ts

∑
t∈Ts : t′<t

ast′(1−ϕst′t)yst′t .

4.2. RFRP Formulation (Fst)
In this section, we derive a new valid RFRP formula-
tion to reschedule a timetable (for example, a timetable
generatedwith formulation Fx y) after some disruption.
To compare results with those from previous literature,
we (equivalently) change the objective function from a
minimization of users’ inconvenience to a maximiza-
tion of users’ satisfaction after the disruption, where
we understand the satisfaction function (after disrup-
tion) as 1− ϕ̃

Fst : max
∑
s∈S

∑
t′∈Ts

∑
t∈Ts :t′<t<θ−s ,ks , t′+1

ast′(1−ϕ̃st′t)xst (6a)

s.t.
∑
t∈T1

x1t�κ̄, (6b)

xst≤
∑

t′:(t+µs , t′)∈T2
s+1

xs+1t′ s∈S: s< |S |, t∈Ts , (6c)∑
t∈Ts :θ−s ,k−1<t<θ−s ,k+1

xst≤1 s∈S, k∈K, (6d)

0≤xst≤1 s∈S, t∈Ts , (6e)
xst∈{0,1} s∈S, t∈Ts . (6f)

The objective function (6a) maximizes the total users’
satisfaction. It indicates that the satisfaction of passen-
gers who arrived at station s at time t′ is 1 − ϕ if a
vehicle departs at time t. Note that outside the inter-
val (t′, θ−s , ks , t′+1) the satisfaction for demand ast′ is not
defined but results in being computed as 0. Note also
that (6a) is well defined since constraints (6d) ensure
that no more than one vehicle is rescheduled inside
interval (θ−s , k−1 , θ

−
s , k+1), thus avoiding demand ast′ being

served by more than one vehicle. This constraint also
ensures that if a vehicle departure is delayed, the next
one has to be canceled. As in (4b), constraints (6b)
impose that all vehicles depart from the first station.

As in (4c), constraints (6c) impose that if a vehicle
departs from station s at time t, then another vehicle
must depart from the next station inside time interval
[t + µs + λ∗ , t + µs + λ

∗].
Note that Fst generates a rescheduled timetable that

is the same as the one given by Fx y ∪ {(6d)} when
ϕ� ϕ̃. However, formulation Fst enjoys other modeling
advantages and solution possibilities that we describe
in Section 4.3. The main advantage is that by using ϕ̃
instead of ϕ, demand allocation variables y are no
longer necessary since once a timetable is determined
in Fst (in terms of x variables) the cost structure of ϕ̃
avoids having to allocate demand ast′ to more than
one vehicle departure. In terms of facility location the-
ory, Fx y presents a location-allocation problem where
a timetable x must be along the time horizon and
demand must be allocated to vehicle departures by
means of y variables. On the other hand, Fst can be
seen as a covering problem (Church and ReVelle 1974)
where each timetable x covers a certain demand, but
no demand is covered more than once.

4.3. RFRP Extended Formulation (®Fsut)
In this section we analyze the feasible region of for-
mulation Fst . To describe the convex hull of its lattice
points, we embed the polyhedron of Fst into a space of
higher dimension. For that reason, we introduce a new
set of variables z that account for the time at which a
vehicle arrives at and departs from each station. There-
fore, we denote by zsut the binary variable equal to 1 if
pair (u , t) of the time window T2

s is used by a vehicle; 0,
otherwise. Note that variables x and z are related by
means of

xst �
∑

t′: (t+µs , t′)∈T2
s+1

zs+1, t+µs , t′ s ∈ S: s < |S |, t ∈ Ts , (7)

xst �
∑

u: (u , t)∈T2
s

zsut. s ∈ S: 1 < s , t ∈ Ts . (8)

Indeed, constraints (7) relate departure times of vari-
ables x with arrival times of variables z imposing that if
a vehicle departs from station s at time t, then it arrives
at station s+1 at time t+µs to depart at a time t′within
the timewindow (t+µs , t′) ∈T2

s+1. Constraints (8) relate
departure times of variables x with departures times
of variables z imposing that if a vehicle departs from
station s at time t (according to variables x), then it
also departs at time t (according to variables z) having
arrived at a time u within time window (u , t) ∈ T2

s .
Conversely, due to the binary nature of variables z

and x, they can be related by means of

zsut � xs−1, u−µs−1
xst s ∈ S: 1 < s , (u , t) ∈ T2

s . (9)

Hence, formulation Fst can be written by using vari-
ables zsut as follows:

®Fsut: max
∑
s∈S

∑
t′∈Ts

∑
t∈Ts : t′<t<θ−s , ks , t′+1

ast′(1− ϕ̃st′t)xst (10a)
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s.t.
∑
t∈T1

x1t � κ̄, (10b)

xst �
∑

t′: (t+µs , t′)∈T2
s+1

zs+1, t+µs , t′

s ∈ S: s < |S |, t ∈Ts , (10c)
xst �

∑
u: (u , t)∈T2

s

zsut s ∈ S: 1< s , t ∈Ts , (10d)∑
t∈Ts :θ−s , k−1<t<θ−s , k+1

xst ≤ 1 s ∈ S, k ∈K, (10e)

0≤ xst ≤ 1 s ∈ S, t ∈Ts , (10f)
0≤ zsut ≤ 1 s ∈ S: 1< s , (u , t) ∈T2

s , (10g)
xst ∈ {0,1} s ∈ S, t ∈Ts , (10h)
zsut ∈ {0,1} s ∈ S: 1< s , (u , t) ∈T2

s . (10i)

Problem (10a)–(10i) can be seen as a constrained max-
imum cost flow problem in a directed network where
κ̄ units of flow (vehicles) are sent from station 1 to sta-
tion |S |. Arcs can be considered trips between adjacent
stations at a time instant and the cost of each edge is the
captured demand when a vehicle departs at a certain
time. Formulation ®Fsut differs from Fst in constraints
(10c)–(10d) that preserve vehicle flows at each station
in ®Fsut as (6c) do in Fst . Thus, the solution space in
terms of variables xst can be proven to be the same for
®Fsut and Fst .
Property 1. Let Ωst be the lattice points defined by con-
straints (6b)–(6f) and ®Ωsut; x the projection defined by con-
straints (10b)–(10i) over the x variables. ThenΩst � ®Ωsut; x .

Next, we extend the analysis to the polyhedra of the
linear relaxations of both formulations.
Property 2. Let Ωst

LR be the polyhedron defined by con-
straints (6b)–(6e) and ®Ωsut; x

LR the projection defined by con-
straints (10b)–(10g) over the x variables. ThenΩst

LR )
®Ωsut; x

LR .

The importance of the equivalent formulation ®Ωsut

comes from our next result which proves that its con-
straintsmatrix is totally unimodular (TU) and therefore
this problem is solvable with linear programming.
Property 3. The RFRP can be solved with linear program-
ming by means of ®Fsut.

Based on the last formulation ®Asut one can derive
another formulation that also enjoys the integrality
property but with a smaller number of variables and
constraints. Consider the following formulation:

Fsut: max
{∑

t′∈T1

∑
t′′: (t+µ1 , t′′)∈T2

2

a1t′(1− ϕ̃1t′t)z2, t+µ1 , t′′

+
∑
s∈S

∑
t′∈Ts

∑
(u , t)∈T2

s : t′<t<θ−s , ks , t′+1

ast′(1− ϕ̃st′t)zsut

}
(11a)

s.t.
∑
(u , t)∈T2

2

z2ut � κ̄, (11b)

∑
u: (u , t)∈T2

s

zsut �
∑

t′: (t+µs , t′)∈T2
s+1

zs+1, t+µs , t′

s ∈ S: 1< s < |S |, t ∈Ts , (11c)∑
(u , t)∈T2

s :θ−s , k−1<t<θ−s , k+1

zsut ≤ 1
s ∈ S: 1< s , k ∈K, (11d)

0≤ zsut ≤ 1 s ∈ S: 1< s , (u , t) ∈T2
s , (11e)

zsut ∈ {0,1} s ∈ S: 1< s , (u , t) ∈T2
s .. (11f)

The objective function (11a) maximizes the total users’
satisfaction. Since variables z are not defined for s � 1,
we count the departure time t from station 1 by means
of z2, t+µs , t′′ for a t′′ within time window (t + µ1 , t′′)
∈ T2

2 . Constraints (11b) impose that on each station all
vehicles are scheduled. Constraints (11c) impose that
the number of vehicles departing from station s before
time t ∈ Ts , must be lower than or equal to the number
of vehicles departing from station s + 1 at time t + µs .
Constraints (11d) impose that there is no more than
one vehicle departing from station s inside time inter-
val (θ−s , k−1 , θ

−
s , k+1).

Property 4. Let Ωsut be the lattice points defined by con-
straints (11b)–(11f) and ®Ωsut; z the projection of (10b)–(10i)
over the z variables. Then Ωsut � ®Ωsut; z .

Next, we extend the analysis to the polyhedra of the
linear relaxations of both formulations.

Property 5. Let Ωsut
LR be the polyhedron defined by con-

straints (11b)–(11e) and ®Ωsut; z
LR the projection of (10b)–(10g)

over the z variables. ThenΩsut
LR � ®Ωsut; z

LR .

Properties 4 and 5 imply that the coefficient matrix
of the constraints defining Ωsut is also TU as it is the
correspondingmatrix of ®Ωsut. However, using formula-
tion Fsut for solving problem RFRP is more convenient
since it has fewer variables and constraints. Thus, we
shall use it in our computational experiments.

4.4. Modeling Extensions
The models in the previous sections assume that all
vehicles are identical. This assumption is reasonable
but could be too restrictive in practical situations,
specifically if further side constraints were added in
terms of capacities and travel times. It is beyond the
scope of this paper to discuss all those possible vari-
ations but it might be of interest to include the exten-
sions of formulations Fst and Fsut to the case when we
make distinctions among the different vehicles.

Let xstk be a binary variable equal to 1 if vehicle k ∈ K̄
(recall that K̄ is the set of vehicles that are about to be
rescheduled) departs from station s at time t (0 other-
wise), and analogously zsutk be a binary variable equal
to 1 if vehicle k arrives at station s at time u and departs
from s at time t. Note that index k may refer to vehicles
and trips (or line runs) because every line run is carried
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out by a single vehicle and every vehicle carries out a
single line run. We denote by Fstk (Fsutk) the formula-
tion that can be derived straightforward from Fst (Fsut)
considering variables xstk (zsutk) instead of xst (zsut)

Fstk : max
∑
k∈K̄

∑
s∈S

∑
t′∈Ts

∑
t∈Ts :t′<t<θ−s ,ks , t′+1

ast′(1−ϕ̃st′t)xstk

(12a)
s.t.

∑
t∈T1

x1tk�1 k∈K̄ , (12b)

xstk≤
∑

t′:(t+µs , t′)∈T2
s+1

xs+1, t′k
s∈S: s< |S |,
t∈Ts , k∈K̄ , (12c)∑

k′∈K

∑
t∈Ts :θ−s ,k−1<t<θ−s ,k+1

xstk′≤1 s∈S, k∈K, (12d)

xstk∈{0,1} s∈S, t∈Ts , k∈K̄ , (12e)

Fsutk: max
{∑

k∈K̄

∑
t′∈T1

∑
t′′:(t+µ1 , t′′)∈T2

2

a1t′(1−ϕ̃1t′t)z2, t+µ1 , t′′ ,k

+
∑
k∈K̄

∑
s∈S

∑
t′∈Ts

∑
(u , t)∈T2

s :t′<t<θ−s ,ks , t′+1

ast′

·(1−ϕ̃st′t)zsutk

}
(13a)

s.t.
∑
(u , t)∈T2

1

z1utk�1 k∈K̄ , (13b)∑
u:(u , t)∈T2

s

zsutk�
∑

t′:(t+µs , t′)∈T2
s+1

zs+1, t+µs , t′k

s∈S: s< |S |, t∈Ts , k∈K̄ , (13c)∑
k′∈K̄

∑
(u , t)∈T2

s :θ−s ,k−1<t<θ−s ,k+1

zsutk≤1
s∈S, k∈K, (13d)

zsutk∈{0,1} s∈S, (u , t)∈T2
s , k∈K̄. (13e)

Note that the interpretation of constraints (12a)–(12e)
and (13a)–(13e) is the same as those associated in for-
mulations Fst and Fsut, respectively.

A formulation using index k that would own the
integrality property would also admit additional con-
straints without losing such property (which is really
important to define other modeling extensions). First,
we could create/modify constraints by means of pa-
rameters depending on the index k, for example, by
using the waiting time of vehicle k at station s (λsk)
or the travel time of vehicle k from station s to sta-
tion s + 1 (µsk). Second, additional constraints could
be added related to bounds on the variables, e.g., time
windows on departing/arriving vehicles.
If no additional parameter/constraint dependent on

index k is added to the model, Fstk contains a large set
of symmetric optimal solutions (κ̄!) since vehicles in an
optimal solution can be relabeledwithout changing the
objective value. In this way, a solution of Fst is related
with κ! solutions of Fstk . Therefore, Fst and Fstk contain
the same set of non-symmetric solutions.

Mesa, Ortega, and Pozo (2013) provide an integer
linear programming formulation valid for the RFRP,
considering the same assumptions for the problem.
While the objective function means the same as that
presented in this paper, the cost vector used in Mesa,
Ortega, and Pozo (2013) is now split into two compo-
nents, i.e., the population that arrives at station s at
time t′ (given by parameter ast′) and the convenience
function (given by 1 − ϕ̃st′t). In this way, the demand
modelization is more general and no logit function (see
Mesa, Ortega, and Pozo 2013) must be defined. There-
fore, formulation Fsutk contains the same set of solu-
tions as those presented in Mesa, Ortega, and Pozo
(2013) but the alternative flow conservation constraints
(13c) provide a better performance and a significant
improvement in running times as we show in Section 5.

We conclude this section by noting that the time dis-
cretization assumed in this paper is not an actual con-
straint. The reasons supporting our claim are threefold.
First, no actual real-world timetable presents arrival-
departure times in fractions of minutes. Second, spe-
cialized literature in previous contributions considers
a discretized time horizon to model discrete arrivals
of groups of passengers and departures/arrivals of
vehicles (see Mesa, Ortega, and Pozo 2009b, 2013,
2014a; Mesa et al. 2014b). Third, a time-continuous
approach would be easily approximated up to any
degree of accuracywith the developments of this paper
by simply introducing a sufficiently large number of
time slots. This scenario would also be tractable with
the development of the present paper showing how
a rescheduling can be rapidly carried out in large
instances, outperforming previous results in the litera-
ture and using real-world data.

5. Computational Experiments
5.1. Testbed of Random Instances
In this section, we assess the computational perfor-
mance of the different models presented. We have gen-
erated instances similar to those in Mesa, Ortega, and
Pozo (2013) to later establish a comparison with the
RFRP formulations presented in that paper. Along a
one-way transit line with a number |S | � 10 of sta-
tions we have generated random instances for |I | �
1,000 transportation requests (origin-destination (O-D)
trips) in the time horizons |T | ∈ {60, 120, 180, 240} with
desired arrival times following a uniform distribution.
This time-dependent O-D matrix gives us the ast val-
ues. The inconvenience cost function after disruption
has been defined as follows:

ϕ̃st′t �



0, t′< t ≤ θ−s , kst′
;( t − θ−s , kst′

θ−s , kst′+1 − θ−s , kst′

) p

, θ−s , kst′
< t ≤ θ−s , kst′+1;

1, θ−s , kst′+1 ≤ t .

(14)
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This results in a discretized function as in Figure 2(c),
assuming p � 2. This inconvenience function is similar
to those described in Mesa, Ortega, and Pozo (2013,
2014a).
Each of our tables reports the following items: Each

row corresponds to a group of five instances with
the same characteristics (|T |, κ, κ̄) indicated in the first
three columns (recall that |T | is the number of time
slots in the time horizon, κ is the fleet size before the
rescheduling, and κ̄ is the fleet size to be rescheduled).
Column t/gap(#) first reports the average running time
in seconds of the five instances of the row. If none of
the five instances were solved to optimality, this col-
umn reports the average relative gap (indicated by a
percentage (%)) computedwith the best solution found

Table 2. Computational Results Comparing the Rescheduling Formulations Fst and Fsut

Fst Fsut

|T | κ κ̄ t/gap(#) t∗/gap∗ gapLR nod obj t/gap(#) t∗/gap∗ gapLR nod obj

60 4 1 0.2 0.7 10.77 1 415.6 0.1 0.1 0 1 415.6
60 4 2 0 0.1 1.21 1 761.2 0.1 0.1 0 1 761.2
60 4 3 0.2 0.5 1.56 1 898 0.1 0.1 0 1 898
60 4 4 0 0 0 1 1,000 0.1 0.1 0 1 1,000
120 9 1 1.3 3 11.34 1 199.6 0.3 0.4 0 1 199.6
120 9 2 7.1 9.2 10.69 1,081 378.8 0.3 0.3 0 1 378.8
120 9 3 10.9 18.9 8.6 1,167 541.2 0.3 0.3 0 1 541.2
120 9 4 5.8 12.3 3.99 101 690.8 0.3 0.3 0 1 690.8
120 9 5 2.2 8.2 1.76 7 794.2 0.3 0.3 0 1 794.2
120 9 6 0.9 3 1.43 3 856.6 0.3 0.3 0 1 856.6
120 9 7 0.4 0.5 0.99 1 908.4 0.3 0.3 0 1 908.4
120 9 8 0.4 1 0.47 1 956.4 0.3 0.3 0 1 956.4
120 9 9 0.1 0.1 0 1 1,000 0.3 0.3 0 1 1,000
180 14 1 6 12.2 15.02 6 128.8 0.5 0.5 0 1 128.8
180 14 2 19.2 37.6 13.39 4,076 251.8 0.4 0.5 0 1 251.8
180 14 3 151.5 489.7 11.7 33,718 365.6 0.4 0.5 0 1 365.6
180 14 4 633 1,384.2 10.4 220,693 471.2 0.5 0.5 0 1 471.2
180 14 5 548.4 1,692.9 8.95 74,771 569.8 0.5 0.5 0 1 569.8
180 14 6 84.1 245.5 6 9,289 663.6 0.5 0.5 0 1 663.6
180 14 7 15.2 33.5 3.21 288 742.6 0.5 0.5 0 1 742.6
180 14 8 4.1 8.4 1.94 6 798.6 0.5 0.5 0 1 798.6
180 14 9 2.2 6.6 1.42 2 842.6 0.5 0.5 0 1 842.6
180 14 10 1.4 2.4 1.26 1 879.4 0.5 0.5 0 1 879.4
180 14 11 1.5 2.9 1.15 1 911.8 0.5 0.5 0 1 911.8
180 14 12 1.3 2.7 0.78 1 943.4 0.5 0.5 0 1 943.4
180 14 13 0.6 0.9 0.41 1 972.6 0.5 0.5 0 1 972.6
180 14 14 0.2 0.2 0 1 1,000 0.4 0.4 0 1 1,000
240 18 1 10.3 13.6 16.31 18 100 0.7 0.8 0 1 100
240 18 2 63.4 143.6 16.06 10,678 196 0.6 0.6 0 1 196
240 18 3 579.2 (4) 4.95% 15.52 159,843 286.2 0.6 0.6 0 1 286.2
240 18 4 1,434.3 (2) 7.4% 14.41 180,966 371.4 0.6 0.6 0 1 372.8
240 18 5 1,563.2 (1) 5.75% 12.23 102,120 457.2 0.6 0.6 0 1 457.6
240 18 6 2.86% (0) 4.48% 10.76 81,552 535.4 0.6 0.7 0 1 536
240 18 7 1,166.1 (3) 2.4% 8 62,051 612.4 0.6 0.7 0 1 612.4
240 18 8 278.2 912 5.15 22,099 683 0.6 0.6 0 1 683
240 18 9 28 62.7 3.1 1,499 740.6 0.6 0.7 0 1 740.6
240 18 10 14 32.9 2.21 201 783.4 0.6 0.7 0 1 783.4
240 18 11 6.1 11.9 1.76 13 819.6 0.6 0.7 0 1 819.6
240 18 12 4.9 9.7 1.41 5 852 0.6 0.7 0 1 852
240 18 13 5 9 1.29 10 880.2 0.6 0.7 0 1 880.2
240 18 14 3.4 7 1.1 2 906.8 0.7 0.7 0 1 906.8
240 18 15 2.5 4.6 0.85 1 932.2 0.6 0.7 0 1 932.2
240 18 16 1.8 3.4 0.45 1 957.2 0.6 0.6 0 1 957.2
240 18 17 0.9 2.2 0.2 1 979.8 0.6 0.6 0 1 979.8
240 18 18 0.3 0.3 0 1 1,000 0.6 0.6 0 1 1,000

by the solver and the LP bound. In addition, if at least
one instance reaches the CPU time limit, we indicate
in parentheses the number of instances that could be
solved to optimality within the time limit and, in these
cases, we compute the average running time using the
time limit for those instances that could not be solved
to optimality. Column t∗/gap∗ reports the biggest CPU
time over the five instances of the group. Whenever
the time limit is reached for at least one instance, the
maximum relative gap (indicated by a percentage (%))
is reported instead. Column gapLR reports the average
relative percentage gap (of the five instances of the row)
computed with the best solution found by the solver
and the optimal value of the linear relaxation at the root
node. Column nodes indicates the average number of

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

22
7.

24
.1

41
] 

on
 2

5 
Ju

ne
 2

01
8,

 a
t 0

6:
49

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Ortega, Pozo, and Puerto: On-Line Timetable Rescheduling in a Transit Line
Transportation Science, Articles in Advance, pp. 1–16, ©2018 INFORMS 11

nodes explored in the branch and bound tree. Finally,
column obj reports the average objective value of the
five instances of the row. All tables report analogous
items for the different formulations described through-
out the paper. To facilitate the comparison among all
tables, we have denoted the best result among all in the
same group in bold.

All instances were solved with the MIP Xpress 7.7
optimizer, in a Windows 7 environment with an Intel
Core i7 CPU 2.93 GHz processor and 16 GB RAM.

Table 3. Computational Results Comparing The 4-Index Rescheduling Formulation Fsutk as Presented in Mesa, Ortega, and
Pozo (2013) with the Current Models Fsut and Fsutk

Fsutk as in Mesa, Ortega, and Pozo (2013) Fstk Fsutk

|T | κ κ̄ t/gap(#) t∗/gap∗ gapLR nod obj t/gap(#) t∗/gap∗ gapLR nod obj t/gap(#) t∗/gap∗ gapLR nod obj

60 4 1 3 8.6 14.55 4 415.6 0.2 0.7 10.77 1 415.6 0.1 0.1 0 1 415.6
60 4 2 6.5 26.6 3.84 12 761.2 0.3 1.2 1.21 1 761.2 0.4 0.4 0 1 761.2
60 4 3 32 77.1 3.53 522 898 3.9 7.6 1.56 11 898 0.5 0.6 0 1 898
60 4 4 1.1 1.2 0 1 1,000 0.3 0.3 0 1 1,000 0.6 0.6 0 1 1,000
120 9 1 4.2 8.9 15.54 1 199.6 1.3 3.1 11.34 1 199.6 0.6 0.6 0 1 199.6
120 9 2 610 1,103.6 14.7 21,456 378.8 22.5 28.4 10.69 175 378.8 0.9 0.9 0 1 378.8
120 9 3 4% (0) 6.09% 12.36 43,180 541.2 81.7 123.2 8.6 4,138 541.2 1.3 1.3 0 1 541.2
120 9 4 1,765.9 (1) 5.78% 7.46 16,730 689.6 130.8 225.4 3.99 4,752 690.8 1.8 1.9 0 1 690.8
120 9 5 2.18% (0) 5.66% 5 8,236 793 420.3 (4) 0.75% 1.76 11,179 794.2 2.3 3 0 1 794.2
120 9 6 2.39% (0) 3.95% 4.75 10,199 854.8 475.3 (4) 0.67% 1.43 6,276 856.6 2.9 3.6 0 1 856.6
120 9 7 2.3% (0) 2.87% 3.77 8,179 908.2 504 1,072.6 0.99 5,345 908.4 3.6 4.1 0 1 908.4
120 9 8 1,462.1 (1) 1.47% 2.25 6,348 956.4 66.1 116.6 0.47 125 956.4 4.2 5.2 0 1 956.4
120 9 9 10.1 12.6 0 1 1,000 1.4 1.5 0 1 1,000 3.4 3.5 0 1 1,000
180 14 1 24.9 38 19.93 162 128.8 5.9 12 15.02 6 128.8 1.2 1.2 0 1 128.8
180 14 2 1,622.7 (1) 8.21% 18.01 34,985 251.8 50.5 58.6 13.39 1,778 251.8 1.3 1.4 0 1 251.8
180 14 3 8.91% (0) 11.4% 16.48 26,553 364.6 627.7 (4) 2.05% 11.7 33,292 365.6 2.1 2.4 0 1 365.6
180 14 4 9.46% (0) 11.83% 14.95 9,648 470.2 1,753.1 (1) 5.61% 10.4 57,412 471.2 3.3 3.8 0 1 471.2
180 14 5 8.91% (0) 11.4% 13.67 6,144 566.4 5.11% (0) 6.65% 8.95 51,530 569.8 4.6 5.1 0 1 569.8
180 14 6 7.91% (0) 10.61% 11.11 4,090 655.2 3.78% (0) 5.61% 6.03 18,722 663.4 5.8 6.3 0 1 663.6
180 14 7 7.39% (0) 8.6% 9.81 3,260 721.6 1.96% (0) 3.43% 3.27 6,701 742.2 7.5 10.9 0 1 742.6
180 14 8 9.3% (0) 16.83% 12.02 1,476 754.2 1,424.4 (2) 2.15% 1.94 3,405 798.6 8.3 10.1 0 1 798.6
180 14 9 6.14% (0) 9.33% 7.57 950 822.2 1,745.7 (1) 1.27% 1.44 3,294 842.4 10.1 12 0 1 842.6
180 14 10 5.48% (0) 6.79% 6.76 682 861.2 1,461.4 (1) 1.42% 1.38 1,822 878.4 12.3 15 0 1 879.4
180 14 11 3.96% (0) 4.72% 5.03 1,051 902.6 1,460.1 (1) 1.29% 1.17 1,696 911.6 17.7 21.3 0 1 911.8
180 14 12 3.26% (0) 5.03% 4.09 1,188 933.4 1,441.7 (1) 0.99% 0.81 2,100 943.2 19 24 0 1 943.4
180 14 13 1.27% (0) 1.68% 1.92 1,225 971.4 1,161.5 (2) 0.32% 0.41 5,263 972.6 19 21.4 0 1 972.6
180 14 14 54.8 66.9 0 1 1,000 3.6 3.7 0 1 1,000 10.3 10.5 0 1 1,000
240 18 1 43.1 60.1 21.51 267 100 10.1 13.6 16.31 18 100 1.3 1.9 0 1 100
240 18 2 8.38% (0) 14.17% 21.04 34,656 195.8 98 235.6 16.06 1,951 196 1.9 2.4 0 1 196
240 18 3 12.76% (0) 19.23% 21.51 12,929 283.2 856.6 (4) 7.38% 15.52 76,627 286.2 4 4.5 0 1 286.2
240 18 4 13.22% (0) 15.43% 20.3 5,288 367.8 7.77% (0) 11.38% 13.97 63,896 372.8 5.1 6.9 0 1 372.8
240 18 5 14.63% (0) 18.12% 21.16 2,672 440.2 8.07% (0) 10.45% 12.23 35,816 457.2 8.8 10.7 0 1 457.6
240 18 6 14.28% (0) 17.88% 19.27 1,675 515.6 8.59% (0) 10.63% 10.76 14,374 535.4 14.5 16.4 0 1 536
240 18 7 13.68% (0) 22.94% 18.57 561 578.8 7.52% (0) 9.26% 8.78 5,732 608 19.6 20.8 0 1 612.4
240 18 8 12.81% (0) 19.35% 17.01 350 636.6 5.91% (0) 8.86% 6.65 2,304 673.6 29.1 31.9 0 1 683
240 18 9 14.23% (0) 23.47% 18.61 236 668.8 5.06% (0) 7.1% 5.65 1,945 722.8 32.8 34.9 0 1 740.6
240 18 10 10.31% (0) 17.09% 12.9 164 736 4.16% (0) 5.5% 4.51 1,738 766.2 38.2 45 0 1 783.4
240 18 11 8.09% (0) 11.22% 9.92 139 786.4 2.87% (0) 3.82% 3.1 830 809 45.2 49.6 0 1 819.6
240 18 12 10% (0) 13.22% 12.18 81 797.8 2.7% (0) 4.66% 2.88 633 840 47.8 58.6 0 1 852
240 18 13 9.09% (0) 12.32% 11.01 87 830.4 1.26% (0) 1.91% 1.35 689 879.6 55.1 61.3 0 1 880.2
240 18 14 7.08% (0) 11.91% 8.64 70 869.8 1.31% (0) 1.75% 1.41 643 904 61.9 67.2 0 1 906.8
240 18 15 5.14% (0) 8.19% 6.36 67 907 1,509.7 (1) 1.24% 0.98 468 931 66.5 72.1 0 1 932.2
240 18 16 4.16% (0) 6.06% 5 162 934 1,449.9 (1) 0.8% 0.57 1,864 956 66.5 75.8 0 1 957.2
240 18 17 7.64% (0) 32.39% 11.06 115 912.8 367.2 665.2 0.2 10 979.8 65.9 72.1 0 1 979.8
240 18 18 164.2 202.2 0 1 1,000 7.8 8.8 0 1 1,000 20.5 21.2 0 1 1,000

Default values were initially used for all parameters of
Xpress solver and a time limit of 3,600 seconds was set.

Table 2 reports the comparison between formula-
tions Fst and Fsut. The caption just above each block
gives the formulation to which the block refers. Even
when Fst provides optimal solutions in small running
times until |T |�120, longer times are required for some
instances of |T |�180 and not all instances can be solved
to optimality for some instances of |T | � 240. Column
gapLR in Fst shows that only instances where κ̄ � κ can
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be solved with linear programming. However, accord-
ing to nodes many of the instances in Fst were solved in
the root node by just adding preprocessing cuts. In gen-
eral, among all tables, column obj shows how the objec-
tive function (i.e., passengers total satisfaction after the
rescheduling) grows with the number of vehicles that
are rescheduled. Block Fsut shows that formulation Fst

is clearly outperformed by Fsut, which can be solved
using liner programming.
From the results in Table 3 we first observe that Fstk

provides worse running times and gaps than the previ-
ously analyzed Fst and Fsut formulations (see Table 2).
As mentioned in Section 4.4, working with those for-
mulations does not provide any advantage unless extra
side constraints related to the features of different vehi-
cles are included. Otherwise, we just enlarge the size of
the formulation as well as the set of feasible symmetric
solutions. On the contrary, although Fsutk is still solved
as a linear program, the running times of the larger
instances (|T | � 240) show an increase in the difficulty
of solving these problems. Finally, our implementation
of the model Fsutk given in Mesa, Ortega, and Pozo
(2013) is clearly outperformed by any of the other for-
mulations in terms of running time and gaps.
To summarize, formulation Fsut can be used to solve

large instances in running times lower than 1 second,
which fulfills the requirements for an efficient on-line
rescheduling. In addition, we could cope with a bigger
formulation Fsutk in reasonable times (1 minute in the
worst case). This is an improvement with respect to the
results of Mesa, Ortega, and Pozo (2013). As to formu-
lations Fstk and Fsutk, even when the results provided
are not competitive with Fst and Fsut, respectively, they
use the index k, which might be very useful if other
side constraints (such as capacities or different travel
times for each vehicle) are added to the formulation.
In this latter case, we refer to the heuristic approaches
developed in Mesa, Ortega, and Pozo (2013).

5.2. Application to Real Data
We have tested the presented methodology in a real
instance of the commuter train systems of Madrid.
Demand data was obtained from a counting and a sur-
vey carried out in 2008 (see Mesa, Ortega, and Pozo
2009b, 2013). The sample was obtained in the work
days of November and it represents an average work
day. Figure 3 shows a section of Line C4 (〈1〉 � Parla—
〈2〉 � Getafe Sector 3—〈3〉 � Getafe Centro—〈4〉 � Las
Margaritas Universidad—〈5〉 � Villaverde Alto—〈6〉 �
Villaverde Bajo—〈7〉 �Atocha) that we consider in our
study. Table 4 shows departure times (h:m) at stations
of all trains that complete the itinerary Parla–Atocha in
the time period [6:00, 9:00], as well as the number of
passengers boarding trains at each station (bs , h:m).
Note that the time slots t corresponding to a depar-

ture time h:m can be obtained using t � (h − 6) · 60+ m.

Figure 3. (Color online) Line C4 (Parla–Atocha)

We have generated users arriving at station s at time t
from passengers boarding trains at each station as fol-
lows: If t′ and t′′ are consecutive departure times at the
same station, then ast � bbst′′/(t′′− t′)c + bt/t′′c(bst′′ −
(t′′ − t′)bbst′′/(t′′− t′)c) for t ∈ (t′, t′′], that is, passen-
gers arrive uniformly in (t′, t′′] but we add to t′′ those
passengers whom we lost rounding down. Finally,
the inconvenience cost function has been generated
using (14) for values of p ∈ {1.5, 1.75, 2}.
Table 5 shows the objective values obj (also the

percentage out of 32,206 passengers, obj%) when a
reschedule is carried out with κ̄ vehicles. First, we con-
sider the myopic strategy that consists of canceling the
25− κ̄ timetables that serve the least number of users.
Second, we compute the objective values obtained
from formulation Fsut when the different values of p �

{1.5, 1.75, 2} are considered for the inconvenience cost
function ϕ̃. Note that in this case every instance has
been optimally solved in less than one second. From
the results depicted in Table 5 we mainly conclude
that the best values are obtained for p � 2 whereas
the values closer to the myopic solution (i.e., the worst
values) are obtained for p � 1.5. This means that the
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Table 4. Timetables and Boarding in Line C4

s � 1 s � 2 s � 3 s � 4 s � 5 s � 6 s � 7

k h:m bs , h:m h:m bs , h:m h:m bs , h:m h:m bs , h:m h:m bs , h:m h:m bs , h:m h:m bs , h:m

1 6:04 335 6:10 1 6:13 44 6:15 7 6:18 44 6:21 46 6:31 147
2 6:12 177 6:18 5 6:21 113 6:24 48 6:26 124 6:29 81 6:38 302
3 6:16 307 6:22 1 6:25 35 6:28 29 6:30 64 6:34 58 6:42 123
4 6:22 55 6:28 8 6:31 138 6:33 54 6:36 163 6:39 86 6:48 234
5 6:28 429 6:34 10 6:36 145 6:39 62 6:42 173 6:44 119 6:54 349
6 6:34 511 6:40 4 6:42 102 6:44 26 6:46 153 6:50 115 7:00 571
7 6:40 484 6:46 12 6:48 151 6:50 54 6:52 119 6:57 107 7:07 129
8 6:46 491 6:52 10 6:54 166 6:56 70 7:00 157 7:04 160 7:12 184
9 6:54 414 7:00 24 7:03 254 7:05 119 7:08 158 7:12 185 7:20 490
10 7:01 476 7:07 17 7:10 195 7:12 88 7:15 106 7:18 145 7:26 514
11 7:09 421 7:15 33 7:18 260 7:20 111 7:24 146 7:27 209 7:35 491
12 7:16 550 7:22 38 7:25 218 7:27 158 7:30 123 7:34 298 7:43 574
13 7:22 414 7:28 36 7:31 247 7:34 119 7:38 136 7:41 243 7:48 451
14 7:28 421 7:34 26 7:37 127 7:41 104 7:44 97 7:47 154 7:54 276
15 7:34 386 7:40 31 7:42 145 7:45 113 7:48 103 7:53 144 8:00 424
16 7:40 384 7:46 47 7:48 171 7:50 108 7:54 99 7:58 180 8:06 284
17 7:46 323 7:52 31 7:54 202 7:57 134 8:00 128 8:04 231 8:12 647
18 7:52 408 7:58 19 8:01 190 8:02 77 8:05 84 8:09 192 8:18 446
19 7:58 441 8:03 49 8:06 210 8:09 91 8:13 119 8:15 223 8:24 335
20 8:04 165 8:10 47 8:13 229 8:15 110 8:19 126 8:23 259 8:30 338
21 8:11 347 8:15 44 8:18 225 8:21 134 8:25 98 8:28 165 8:36 302
22 8:16 336 8:22 38 8:25 294 8:28 112 8:30 79 8:33 158 8:42 271
23 8:22 317 8:28 33 8:31 230 8:34 119 8:36 119 8:40 156 8:48 410
24 8:28 335 8:34 36 8:37 119 8:39 91 8:41 61 8:45 144 8:54 364
25 8:34 265 8:40 13 8:43 117 8:45 66 8:47 43 8:52 153 9:00 381

Table 5. Objective Values When a Reschedule Is Carried Out with κ̄ Vehicles

myopic Fsut | p � 1.5 Fsut | p � 1.75 Fsut | p � 2

κ̄ obj obj% obj obj% obj obj% obj obj%

1 1,959 6.08 2,133 6.62 2,225 6.91 2,304 7.15
2 3,655 11.35 4,002 12.43 4,166 12.94 4,310 13.38
3 5,326 16.54 5,858 18.19 6,103 18.95 6,314 19.61
4 6,972 21.65 7,615 23.64 7,902 24.54 8,156 25.32
5 8,616 26.75 9,285 28.83 9,646 29.95 9,961 30.93
6 10,157 31.54 10,909 33.87 11,325 35.16 11,693 36.31
7 11,639 36.14 12,506 38.83 12,984 40.32 13,416 41.66
8 13,107 40.7 14,084 43.73 14,557 45.20 15,042 46.71
9 14,523 45.09 15,580 48.38 16,083 49.94 16,567 51.44
10 15,907 49.39 17,052 52.95 17,561 54.53 18,067 56.10
11 17,253 53.57 18,418 57.19 18,897 58.68 19,430 60.33
12 18,568 57.65 19,733 61.27 20,191 62.69 20,668 64.17
13 19,856 61.65 21,011 65.24 21,463 66.64 21,892 67.97
14 21,143 65.65 22,203 68.94 22,599 70.17 22,987 71.37
15 22,417 69.61 23,320 72.41 23,664 73.48 24,019 74.58
16 23,690 73.56 24,435 75.87 24,729 76.78 25,041 77.75
17 24,928 77.4 25,535 79.29 25,780 80.05 26,045 80.87
18 26,133 81.14 26,579 82.53 26,783 83.16 27,037 83.95
19 27,283 84.71 27,578 85.63 27,769 86.22 27,970 86.85
20 28,339 87.99 28,554 88.66 28,715 89.16 28,869 89.64
21 29,377 91.22 29,480 91.54 29,614 91.95 29,739 92.34
22 30,227 93.86 30,393 94.37 30,474 94.62 30,556 94.88
23 30,965 96.15 31,294 97.17 31,330 97.28 31,366 97.39
24 31,589 98.08 31,796 98.73 31,817 98.79 31,840 98.86
25 32,206 100 32,206 100 32,206 100 32,206 100
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Figure 4. (Color online) Timetables and myopic
Rescheduling (Bold) for 15 Vehicles
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inconvenience grows faster as long as p decreases, and
consequently, the smaller the value of p the closer
the objective values of Fsut are to those of the myopic
strategy.
Figure 4 shows the 25 initial timetables provided

by the company, and by bold lines, the timetables of
the myopic solution when a reschedule of 15 vehicles
is carried out. On the other hand, Figure 5 shows the
25 initial timetables provided by the company, and
by bold lines, those timetables obtained for the opti-
mal rescheduling of 15 trains according to the devel-
oped model. If the myopic selection of the 15 most
efficient timetables were decided, the objective value
(i.e., total convenience) would be 22,417. An improve-
ment of 1,602 units could be reached if the reschedul-
ing is performed by applying the model to determine
the 25 optimal line runs.

6. Conclusions
In this paper we have presented a modeling approach
for solving the rescheduling problem in a transit
line that has suffered a fleet size reduction. We have
described a demand pattern to reflect the passengers’
behavior when some vehicle services are delayed or
canceled. This inconvenience function has been used
to derive a rescheduling framework coming from a
timetabling formulation.We have shown that the prob-
lem can be rapidly solved using a formulation whose
coefficient matrix we prove is totally unimodular. We
have tested the different formulations over a testbed
of random instances: The results show that on-line
rescheduling can be done efficiently using the pro-
posed models and that previous approaches in the lit-
erature are outperformed.
This paper does not consider some extensions that

could be included in future research. First, formu-
lations that use the index k (for the different vehi-
cles) might be very useful if other side constraints are
added. There are some kinds of constraints that could
be added without losing the integrality property, for
example using the waiting time of vehicle k at sta-
tion s (λsk) or the travel time of vehicle k from sta-
tion s to station s + 1 (µsk). Second, additional con-
straints could be added related to bounds on the

Figure 5. (Color online) Timetables and Fsut Solution (Bold)
for 15 Vehicles
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variables, e.g., time windows on departing/arriving
vehicles. As to vehicle capacities, including capac-
ity constraints would destroy the linear properties of
the model. In our formulations, we can only penalize
delays/cancelations harder in those stations with an
intense level of demand. This would be done by just
properly calibrating the inconvenience function ϕst′t .
Eventually, the operator may decide to add additional
wagons in overcrowded trains (once the reschedul-
ing is computed). Issues concerning capacities in vehi-
cle rescheduling can be revised in Kroon, Maróti, and
Nielsen (2015). Finally, as in Mesa, Ortega, and Pozo
(2013), this paper does not consider the way back of
vehicles in the transit line. For such type of models in
the timetabling and scheduling problem, we refer the
reader to Mesa et al. (2014b).
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Appendix A. Proofs
Property 1. Let Ωst be the lattice points defined by constraints
(6b)–(6f) and ®Ωsut; x the projection defined by constraints (10b)–
(10i) over the x variables. Then Ωst � ®Ωsut; x .

Proof. We prove first that every feasible solution to Ωst is
feasible in ®Ωsut; x . Given x ∈Ωst we prove that there exists z,
given by (9), thus verifying (x , z) ∈ ®Ωsut, that is, (x , z) has to
verify (10c) and (10d). From (10c) and (9) we must prove that

xst �
∑

t′: (t+µs , t′)∈T2
s+1

zs+1, t+µs , t′ �
∑

t′: (t+µs , t′)∈T2
s+1

xst xs+1, t′

� xst

∑
t′: (t+µs , t′)∈T2

s+1

xs+1, t′ ,

which is true when xst � 0. If xst � 1, then we have 1 �∑
t′: (t+µs , t′)∈T2

s+1
xs+1, t′ and therefore (10c) holds.

From (10d) and (9)

xst �
∑

u: (u , t)∈T2
s

zsut �
∑

u: (u , t)∈T2
s

xs−1, u−µs−1
xst

� xst

∑
u: (u , t)∈T2

s

xs−1, u−µs−1 ,

which is true when xst � 0. If xst � 1, then we have 1 �∑
u: (u , t)∈T2

s
xs−1, u−µs−1 and therefore (10d) holds.
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Figure A.1. Structure of ®Asut Matrix When s ∈ {1, 2}, (u , t) ∈ T2
s , and µs � 0

11 × |T1| …

M1
|K| × |T1| …

−11 × |T2| …

−11 × (|T2| − 1) …

I |T1| −11 × (|T2| − 2) …

. . .

… −1

01 × (|T2| − 1) 02 × (|T2| − 2) 0(|T2| − 1) × 1

I |T2|
I |T2| − 1 I |T2| − 2

… − I |T2|

1

… M2
|K| × |T2|

Therefore Ωst ⊆ ®Ωsut; x .
Conversely, we prove that every feasible solution (x , z) ∈
®Ωsut; x is feasible in Ωst if x it verifies (6c).
From (10c) and (9)

xst �
∑

t′: (t+µs , t′)∈T2
s+1

zs+1, t+µs , t′ �
∑

t′: (t+µs , t′)∈T2
s+1

xst xs+1, t′

� xst

∑
t′: (t+µs , t′)∈T2

s+1

xs+1, t′ ≤
∑

t′: (t+µs , t′)∈T2
s+1

xs+1, t′ .

This inequality concludes the proof. �
Property 2. Let Ωst

LR be the polyhedron defined by constraints
(6b)–(6e) and ®Ωsut; x

LR the projection defined by constraints (10b)–
(10g) over the x variables. Then Ωst

LR )
®Ωsut; x

LR .

Proof. Every fractional solution (x , z) ∈ ®Ωsut verifies that
x ∈Ωst since (6c) is implied by (10c). Therefore Ωst

LR ⊃ ®Ω
sut; x
LR .

On the contrary, there are fractional solutions x ∈Ωst that
do not belong to ®Ωsut (as shown in Section 5). �
Property 3. The RFRP can be solved with linear programming by
means of ®Fsut.

Proof. Denoting by ®Asut the matrix of coefficients coming
from problem ®Fsut, we prove that ®Asut is TU.

Note that ( ®Asut)s∈{1, 2}, (u , t)∈T2
s
when µs � 0 has the form indi-

cated in Figure A.1, where empty boxes represent zeros, 1m×n

stands for a m × n matrix of all ones (analogously for 0
and −1), In is the identity matrix in dimension n, and Mm×n

s
is a matrix of consecutive ones (interval matrix) by the rows
and columns so that it has at most two ones per column.

To prove that ®Asut is TU we give, without loss of generality,
the argument for ( ®Asut)s∈{1, 2}, (u , t)∈T2

s
since it remains the same

for a general number of vehicles s > 2. It is known that a
matrix A� (ai j) is TU if and only if for every J ⊆N � (1, . . . , n)
there exists a partition J1 , J2 of J such that����∑

j∈ J1

ai j −
∑
j∈ J2

ai j

���� ≤ 1, ∀ i � 1, . . . ,m. (A.1)

The proof is constructive. We choose an arbitrary (sorted)
subset of columns of ®Asut, J � ( j1 , . . . , jl) and we construct J1
and J2 as follows: We start with J′1 � j1 and J′2 ��. Iteratively,
we try if (A.1) is fulfilled with J1 � J′1 ∪ jk and J2 � J′2. If so, we
redefine J′1 :� J′1 ∪ ji and otherwise, we redefine J′2 :� J′2 ∪ jk .
Assume that (A.1) holds for given intermediate sets J′1 and J′2
after k − 1 steps of the above process. Next, if the addition of
jk to current J′1 violates condition (A.1), the structure of the
matrix ®Asut ensures that putting jk to J′2 keeps the value of
the difference −1 ≤ ∑

j∈ J′1
ai j −

∑
j∈ J′2∪{ jk }

ai j ≤ 1, ∀ i � 1, . . . ,m.
Repeating this process for all k � 1, . . . , l we obtain a decom-
position of J into J1 � J′1 and J2 � J′2 that satisfies (A.1) which
proves the claim. �
Property 4. Let Ωsut be the lattice points defined by constraints
(11b)–(11f) and ®Ωsut; z the projection of (10b)–(10i) over the z
variables. Then Ωsut � ®Ωsut; z .
Proof. We prove first that every feasible solution (x , z) ∈
®Ωsut; z is feasible in Ωsut. First, equating constraints (10c) and
(10d) results in (11c). Second, constraints (10b) and (10d)
imply (11b) since

κ̄ �
∑
t∈T1

x1t �
∑
t∈T2

x2t �
∑
t∈T2

∑
u: (u , t)∈T2

2

z2ut �
∑
(u , t)∈T2

2

z2ut � κ̄.

Finally, the same argument can be applied to show that (10d)
and (10e) imply (11b). Indeed∑

(u , t)∈T2
s :θ−s , k−1<t<θ−s , k+1

zsut �
∑

t∈Ts :θ−s , k−1<t<θ−s , k+1

∑
u: (u , t)∈T2

s

zsut

�
∑

t∈Ts :θ−s , k−1<t<θ−s , k+1

xst ≤ 1. �

Property 5. Let Ωsut
LR be the polyhedron defined by constraints

(11b)–(11e) and ®Ωsut; z
LR the projection of (10b)–(10g) over the z

variables. Then Ωsut
LR � ®Ωsut; z

LR .
Proof. The proof follows directly from the proof for Prop-
erty 4 since it does not use the integer character of the solu-
tions, and thus is also valid for fractional solutions. �
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